
Binary Search Trees

See Section 19.1 of the text, p 687-696.



Ultimately we are interested in maps, but all of the 
interesting ideas pertain to keys; the values in a 
key-value map just tag along. To keep our examples 
simple we will just consider the keys,as though the 
values mapped to the keys aren’t even there.



Consider the following Binary Search Tree
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This tree has a nice property: for every node, all of 
the nodes in its left subtree have values less than 
the node's value; all of the nodes in its right 
subtree have values that are larger.
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Question: How can we print the nodes of a Binary 
Search tree in increasing order?

A. Preorder traversal (node, left child, right child)
B. Inorder traversal (left child, node, right child)
C. Postorder traversal (left child, right child, node)
D. None of the above
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Question: How can we print the nodes of a Binary 
Search tree in increasing order?

Answer: 

B. Inorder traversal (left child, node, right child) 
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There is an easy algorithm for searching a BST to 
determine if it contains a node with key k:  We start 
at the root.  At each step if k is greater than the key
of the node we move to the right child; if k is less 
we move to the left.  This ends either when we find 
k or when we get to a null child.
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To insert key k into a BST, we do a search and 
insert the new node when we come to a null 
child.  For example if we want to add key 29 to 
our BST we notice that it is greater than 17 (the 
root), less than 35, and greater than 24.  The 
node with key 24 does not have a right child, so 
we add 29 there:
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If we are lucky Binary Search Trees are balanced 
(each node has 2 children and those children have 
the same number of nodes) and each step of a 
search eliminates half of the nodes.  However, we 
might not be so lucky.  Consider the BST we would 
get if we start with root key 0 and then add, in 
order, the keys 8, 12, 17 and 29:
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In this case searching the BST degenerates into a linear 
search.



We want to implement Binary Search Trees 
with the following methods:

• find(v) finds the node with key v
• findMin() and findMax() return the 

tree nodes with the smallest and 
largest keys

• insert(v) adds a node with key v
• removeMin() and removeMax() 

remove the smallest or largest keys
• remove(v) removes the node with key

v



Question: What is an algorithm for finding the 
maximum value in a BST?
A.  Start at the root and go right as far as you can;

when a node has no right child it is the largest.
B.  Do an inorder traversal; the last value is the largest
C.  Walk down the tree comparing the values of the

children; move in the direction of the larger child.
D.  None of the above.
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Both A and B are correct answers.  An in-order 
traversal of a BST lists the nodes in increasing 
order, so the last key it gets to is the largest.  
However, there is no reason to go through all of the 
nodes in a tree to find the largest one.  Just start at 
the root and follow the right links until you get to a 
node that does  not have a right child. That node’s 
]key is the largest.



The find method is easy to implement: just 
follow the definition of a Binary Search Tree.  If 
you get to a null node, the key you seek isn't 
there and you can return null.



There are two ways to handle the insert method.  
For an iterative method you can loop down from 
the root, following the BST algorithm.  If you are 
ready to move to the left and there is no left child, 
put the new node there.  If  you are ready to move 
to the right  and there is no right child, put the 
node there.  



Alternatively you can recurse to do an insert.  To 
insert the item in the tree rooted at node t, look to 
see if it should go in the left or right subtree.  If the 
left subtree, replace t.left by the result of inserting 
the new item in t.left.  In other words

t.left = insert(x, t.left);
The same applies to the right.  When you get to a 
null pointer, return a new node containing item x.



The only BST method that is tricky to implement is 
remove.  
Consider our example tree: 
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Suppose we want to remove the node with 
key 35.  That is tricky.  So we cheat and 
remove something that is easy.  



Question: What is a correct BST that 
might result from removing node 35?
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A node with at most one child is easy to remove: we 
just replace it by its child.  For example, node 42 
could be replaced by node 39 and this would still be 
a BST:
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In this tree we could replace node 10 with 
12 and the result would still be a BST.
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One way to get a node with at most one child is to 
find the minimum or maximum value beneath any 
node.  We get to the minimum by following left 
pointers until there is no left child; the minimum 
node might have a  right child but no left child.  

So let's go back to the problem of removing an 
interior node of a BST.
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We want to remove node 35.

Since it has two children we go to its right 
child; all of the keys in this subtree are 
greater than 35.  
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The minimum node in the subtree of the right child of 35 is a 
node we know how to delete.  The value of this node is 39.

Note that 39 is less than every other node in the right 
subtree of 35, and greater than every node in the left 
subtree.  We can switch it with 35 and delete the node that 
currently contains 39.  The result is a BST that has all of the 
original values except 35:
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Isn't that clever!

To implement this we make a method that starts at a 
given node and returns the smallest key below it, 
and another method that starts at a node and 
removes the node with the smallest key below it.  
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Isn't that clever!

To implement this we make a method that starts at a 
given node and returns the smallest data value 
below it, and another method that starts at a node 
and removes the node with the smallest value below 
it.  
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We go to the right from 35, then find the smallest 
node in 35’s right subtree.

Again it is 39, but this time 39 isn’t a leaf; it has a 
child.
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The same algorithm applies. Since 39 has only one 
child, we remove the 39 node by replacing it with its 
child, and  then replace the key 35 by 39:


