
Binary Search Trees

See Section 19.1 of the text, p 687-696.

Ultimately we are interested in maps, but all of the
interesting ideas pertain to keys; the values in a
key-value map just tag along. To keep our examples
simple we will just consider the keys,as though the
values mapped to the keys aren’t even there.

Consider the following Binary Search Tree

17

15 35

10 16

7 12

24 42

This tree has a nice property: for every node, all of
the nodes in its left subtree have values less than
the node's value; all of the nodes in its right
subtree have values that are larger.

39

17

15 35

10 16

7 12

24 42

39

Question: How can we print the nodes of a Binary
Search tree in increasing order?

A. Preorder traversal (node, left child, right child)
B. Inorder traversal (left child, node, right child)
C. Postorder traversal (left child, right child, node)
D. None of the above

17

15 35

10 16

7 12

24 42

39

Question: How can we print the nodes of a Binary
Search tree in increasing order?

Answer:

B. Inorder traversal (left child, node, right child)

17

15 35

10 16

7 12

24 42

39

There is an easy algorithm for searching a BST to
determine if it contains a node with key k: We start
at the root. At each step if k is greater than the key
of the node we move to the right child; if k is less
we move to the left. This ends either when we find
k or when we get to a null child.

17

15 35

10 16

7 12

24 42

39

To insert key k into a BST, we do a search and
insert the new node when we come to a null
child. For example if we want to add key 29 to
our BST we notice that it is greater than 17 (the
root), less than 35, and greater than 24. The
node with key 24 does not have a right child, so
we add 29 there:

17

15 35

10 16

7 12

24 42

3929

If we are lucky Binary Search Trees are balanced
(each node has 2 children and those children have
the same number of nodes) and each step of a
search eliminates half of the nodes. However, we
might not be so lucky. Consider the BST we would
get if we start with root key 0 and then add, in
order, the keys 8, 12, 17 and 29:

0

8

12

17

29
In this case searching the BST degenerates into a linear
search.

We want to implement Binary Search Trees
with the following methods:

• find(v) finds the node with key v
• findMin() and findMax() return the

tree nodes with the smallest and
largest keys

• insert(v) adds a node with key v
• removeMin() and removeMax()

remove the smallest or largest keys
• remove(v) removes the node with key

v

Question: What is an algorithm for finding the
maximum value in a BST?
A. Start at the root and go right as far as you can;

when a node has no right child it is the largest.
B. Do an inorder traversal; the last value is the largest
C. Walk down the tree comparing the values of the

children; move in the direction of the larger child.
D. None of the above.

17

15 35

10 16

7 12

24 42

3929

Both A and B are correct answers. An in-order
traversal of a BST lists the nodes in increasing
order, so the last key it gets to is the largest.
However, there is no reason to go through all of the
nodes in a tree to find the largest one. Just start at
the root and follow the right links until you get to a
node that does not have a right child. That node’s
]key is the largest.

The find method is easy to implement: just
follow the definition of a Binary Search Tree. If
you get to a null node, the key you seek isn't
there and you can return null.

There are two ways to handle the insert method.
For an iterative method you can loop down from
the root, following the BST algorithm. If you are
ready to move to the left and there is no left child,
put the new node there. If you are ready to move
to the right and there is no right child, put the
node there.

Alternatively you can recurse to do an insert. To
insert the item in the tree rooted at node t, look to
see if it should go in the left or right subtree. If the
left subtree, replace t.left by the result of inserting
the new item in t.left. In other words

t.left = insert(x, t.left);
The same applies to the right. When you get to a
null pointer, return a new node containing item x.

The only BST method that is tricky to implement is
remove.
Consider our example tree:

17

15 35

10 16

7 12

24 42

39

Suppose we want to remove the node with
key 35. That is tricky. So we cheat and
remove something that is easy.

Question: What is a correct BST that
might result from removing node 35?

17

15 35

10 16

7 12

24 42

39

17

15

10 16

7 12

24 42

39

17

15 42

10 16

7 12

24 39
0

17

15 39

10 16

7 12

24 42

A:

B: C:

A node with at most one child is easy to remove: we
just replace it by its child. For example, node 42
could be replaced by node 39 and this would still be
a BST:

17

15 35

10 16

7 12

24 42

39

39

In this tree we could replace node 10 with
12 and the result would still be a BST.

15

10 16

12

One way to get a node with at most one child is to
find the minimum or maximum value beneath any
node. We get to the minimum by following left
pointers until there is no left child; the minimum
node might have a right child but no left child.

So let's go back to the problem of removing an
interior node of a BST.

17

15 35

10 16

7 12

24 42

39

We want to remove node 35.

Since it has two children we go to its right
child; all of the keys in this subtree are
greater than 35.

17

15 35

10 16

7 12

24 42

39

The minimum node in the subtree of the right child of 35 is a
node we know how to delete. The value of this node is 39.

Note that 39 is less than every other node in the right
subtree of 35, and greater than every node in the left
subtree. We can switch it with 35 and delete the node that
currently contains 39. The result is a BST that has all of the
original values except 35:

17

15 39

10 16

7 12

24 42

Isn't that clever!

To implement this we make a method that starts at a
given node and returns the smallest key below it,
and another method that starts at a node and
removes the node with the smallest key below it.

17

15 39

10 16

7 12

24 42

Isn't that clever!

To implement this we make a method that starts at a
given node and returns the smallest data value
below it, and another method that starts at a node
and removes the node with the smallest value below
it.

17

15 35

10 16

7 12

24 42

39

41

40

We go to the right from 35, then find the smallest
node in 35’s right subtree.

Again it is 39, but this time 39 isn’t a leaf; it has a
child.

17

15 39

10 16

7 12

24 42

41

40

The same algorithm applies. Since 39 has only one
child, we remove the 39 node by replacing it with its
child, and then replace the key 35 by 39:

